BIMETRIC THEORY OF FRACTIONAL QUANTUM HALL STATES

 Andrey Gromov

 Andrey Gromov}

Kadanoff Center for Theoretical Physics
Chaos, Duality and Topology in CMT, 2017

ACKNOWLEDGMENTS

Dam Thanh Son

Dung Nguyen

Barry Bradlyn

Scott Geraedts

AG, Scott Geraedts, Barry Bradlyn Phys. Rev. Let. II9, 146602
AG, Dam Thanh Son 1705:06739 (To appear in PRX)
Dung Nguyen, AG, Dam Thanh Son (In Progress)

Other major references

Chui Phys. Rev. B 34, 1409 - (1986)
Tokaty Phys. Rev. B 73, 205340, Phys. Rev. B 74, 035333 - (2006)
Haldane arXiv:0906.1854, PRL (IO7) II6801, arXiv:III2.0990 - (2009-20II)
Maciejko, Hsu, Kivelson, Park, Sondhi PRB 88, 125137 - (2013)
You, Cho, Fradkin DRX 4041050 - (2014)

PLAN

Introduction to QH effect in curved space
Girvin-MacDonald-Platzman mode

- Lowest Landau Level
- W_{∞} algebra
- Single Mode Approximation

Bimetric theory of FQH states

- Bimetric theory
- How does it work?
- Consistency checks

Conclusions and open directions

AT THE QUANTUM HALL PLATEAU

- Gap to all excitations (charged and neutral)
- All dissipative transport coefficients vanish
- Parity and time-reversal broken, but $\mathcal{P T}$-symmetric
- No Lorentz invariance
- Quantized non-dissipative transport coefficients
- Not uniquely characterized by the filling factor

$$
N=\nu N_{\phi}
$$

$$
\sigma_{x y}=\nu \frac{e^{2}}{h}
$$

SPECTRUM

Does anything universal happen at the scale $E \sim$ gap ?

GEOMETRY

Geometry is encoded into time-dependent metric

$$
d s^{2}=g_{i j}(\mathbf{x}, t) d x^{i} d x^{j}
$$

It is more convenient to use vielbeins

$$
g_{i j}=e_{i}^{A} e_{j}^{B} \delta_{A B} \quad \mathbf{g}=\mathbf{e} \cdot \mathbf{e}^{T}
$$

There is a $S O(2)$ redundancy
Corresponding "gauge field" is the spin connection ω_{μ}
Spin connection is a "vector potential" for curvature

$$
\frac{R}{2}=\partial_{1} \omega_{2}-\partial_{2} \omega_{1} \quad \omega_{0} \sim \epsilon_{A}^{B} e_{B}^{i} \partial_{0} e_{i}^{A}
$$

CHERN - SIMONS THEORY OF FQH STATES

For multi-component states each component has its own s_{I}

WEN - ZEE TERM

Wen-Zee term couples the electron density to curvature

$$
\rho=\frac{\nu}{2 \pi} B+\frac{\nu s}{4 \pi} R
$$

Implies a global relation on a compact Riemann surface

$$
N=\nu N_{\phi}+\nu \mathcal{S} \frac{\chi}{2} \longleftarrow \substack{\text { Euler } \\ \text { characteristic }}_{\substack{\text { che }}}
$$

Quantum number $\mathcal{S}=2 s$ is called Shift
Also describes the quantum Hall viscosity

$$
\left\langle T_{x x} T_{x y}\right\rangle=i \omega \eta_{H} \quad \eta_{H}=\hbar \frac{\mathcal{S}}{4} \bar{\rho}
$$

BEYOND TQFT TOOLS

Beyond TQFT we face a strongly interacting problem
What can we do about it?

- Trial states
- Exact diagonalization
- Hydrodynamics
- Flux attachment (composite bosons and fermions)
- Bimetric theory

GIRVIN - MACDONALD - PLATZMAN STATE

GMP MODE IN EXPERIMENT

The GMP mode has been observed in inelastic light scattering experiments

Kang, Pinczuk, Dennis, Pfeiffer, West 2001

Kukushkin, Smet, Scarola, Umansky, von Klitzing 2009

GENERAL REMARKS ABOUT THE GMP MODE

 * Universally present in fractional QH states^ Absent in integer QH states
^ Angular momentum or "spin" 2, regardless of microscopic details
\star Nematic phase transition $=$ condensation of the GMP mode
^ Effective theory of the GMP mode should to be a
theory of massive spin-2 excitation

GIRVIN - MACDONALD - PLATZMAN ALGEBRA

The electron density operator

$$
\rho(\mathbf{x})=\sum_{i=1}^{N_{\mathrm{el}}} \delta\left(\mathbf{x}-\mathbf{x}_{i}\right) \quad \xrightarrow{\text { Fourier }} \quad \rho(\mathbf{k})=\frac{1}{2 \pi} \sum_{i=1}^{N_{\mathrm{el}}} e^{i \mathbf{k} \cdot \mathbf{x}_{i}}
$$

In complex coordinates

$$
\mathbf{k} \cdot \mathbf{x}_{i}=\bar{k} z_{i}+k \bar{z}_{i}
$$

After the Lowest Landau Level projection $\bar{z} \longrightarrow 2 \partial_{z}$
$: \bar{\rho}(\mathbf{k}):=\sum_{i=1}^{N_{\mathrm{el}}} e^{i k \partial_{z_{i}}} e^{i \bar{k} z_{i}}$
Satisfy W_{∞} algebra

$$
[\bar{\rho}(\mathbf{k}), \bar{\rho}(\mathbf{q})]=2 i \sin \left[\frac{\ell^{2}}{2} \mathbf{k} \times \mathbf{q}\right] \bar{\rho}(\mathbf{k}+\mathbf{q})
$$

GIRVIN - MACDONALD - PLATZMAN MODE I

Warning: not standard presentation
The LLL generators of W_{∞} are $\mathcal{L}_{n, m}=\sum_{i=1}^{N_{0}} z_{i}^{z_{i}^{n+1}} D_{z_{i}^{m+1}}^{m+1}$

Operators $\left\{\mathcal{L}_{0,0}, \mathcal{L}_{1,-1}, \mathcal{L}_{-1,1}\right\}$ form $\mathfrak{s l}(2, \mathbb{R})$ algebra

The projected density operator is expanded in $\quad \mathcal{L}_{n, m}$

$$
\bar{\rho}(\mathbf{k})=e^{-\frac{|k|^{2}}{2}} \sum_{m, n} c_{n m} \bar{k}^{n} k^{m} \mathcal{L}_{n-1, m-1}
$$

$\mathcal{L}_{n, m}$ create intra-LL state at momentum \mathbf{k}

GIRVIN - MACDONALD - PLATZMAN MODE II

At long wave-lengths the GMP mode is

$$
\bar{\rho}(\mathbf{k})|0\rangle=\left[\frac{\mathrm{k}^{2}}{8} \mathcal{L}_{-1,1}+\frac{\overline{\mathrm{k}}^{2}}{8} \mathcal{L}_{1,-1}+\ldots\right]|0\rangle
$$

The GMP state $\bar{\rho}(\mathbf{k})|0\rangle$ is a shear distortion at small \mathbf{k}
For IQH $\bar{H}=0 \longrightarrow \bar{\rho}(\mathbf{k})|0\rangle$ is a 0 energy state
Consider two-body Hamiltonian

$$
\bar{H}=\sum_{\mathbf{k}} V(\mathbf{k}) \bar{\rho}(-\mathbf{k}) \bar{\rho}(\mathbf{k})
$$

Since $[H, \bar{\rho}(\mathbf{k})] \neq 0 \quad$ the shear distortion costs energy
At small \mathbf{k} GMP mode is a gapped, propagating, shear distortion of the FQH fluid

BIMETRIC THEORY

BIMETRIC GEOMETRY

The spin-2 mode is described by a symmetric matrix $\mathfrak{h}_{A B}(\mathbf{x}, t)$
Given $\mathfrak{h}_{A B}$ we introduce an "intrinsic" metric and vielbein

$$
\hat{g}_{i j}=e_{i}^{A} e_{j}^{B} \mathfrak{h}_{A B}=\hat{e}_{i}^{\alpha} \hat{e}_{j}^{\beta} \delta_{\alpha \beta} \quad \text { FQH constraint: } \sqrt{g}=\sqrt{\hat{g}}
$$

$\widehat{S O}(2)$ spin connection and curvature follow

$$
\frac{\hat{R}}{2}=\partial_{1} \hat{\omega}_{2}-\partial_{2} \hat{\omega}_{1} \quad \hat{\omega}_{0}=\frac{1}{2} \epsilon^{\alpha}{ }_{\beta} \hat{e}_{\alpha}^{i} \partial_{0} \hat{e}_{i}^{\beta}
$$

Not the same as two copies of Riemannian geometry

$$
\text { Diff } \times \widehat{\text { Diff }} \rightarrow \text { Diff }_{\text {diag }}
$$

This geometry involves two metrics $\left(g_{i j}, \hat{g}_{i j}\right)$, hence bimetric*

VISUALISATION

Can visualize $\hat{g}_{i j}$ as a (fluctuating) pattern on the surface

BIMETRIC THEORY

Chern-Simons theory interacting with fluctuating metric

$$
\mathcal{L}=\frac{k}{4 \pi} a d a-\frac{1}{2 \pi} A d a-\frac{s}{2 \pi} a d \omega-\frac{\varsigma}{2 \pi} a d \hat{\omega}+S_{\mathrm{pot}}[\hat{g}]
$$

We integrate out the gauge field

$$
\mathcal{L}=\mathcal{L}_{1}[A, g]+\mathcal{L}_{b m}[\hat{g} ; A, g]
$$

Where $\mathcal{L}_{1}[A, g]$ contains no dynamics and

$$
\mathcal{L}_{\mathrm{bm}}=\frac{\nu \varsigma}{2 \pi} A d \hat{\omega}-\frac{M}{2}\left(\frac{1}{2} \hat{g}_{i j} g^{i j}-\gamma\right)^{2}
$$

For IQH $k=1$ there is no intra-LL dynamics and

$$
\mathcal{L}=\mathcal{L}_{1}[A ; g]
$$

GEOMETRIC OPERATORS

Density and current operators acquire geometric meaning

Fluctuations of electron density = fluctuations of local Ricci curvature

$$
\rho=\frac{\nu \varsigma}{4 \pi} \hat{R}
$$

Fluctuations of electron current = fluctuations of "gravi-electric" field

$$
j^{i}=\frac{\nu \varsigma}{2 \pi} \epsilon^{i k} \hat{\mathcal{E}}_{k}
$$

To the leading order in \mathbf{k}, everything is determined by
Continuity equation holds identically

$$
\partial_{0} \hat{R}+\epsilon^{i k} \partial_{i} \hat{\mathcal{E}}_{k} \equiv 0
$$

POTENTIAL TERM

$$
\mathcal{L}_{\mathrm{pot}}=-\frac{M}{2}\left(\frac{1}{2} \hat{g}_{i j} g^{i j}-\gamma\right)^{2}=-\frac{M}{2}\left(\frac{1}{2} \operatorname{Tr}(\mathfrak{h})-\gamma\right)^{2}
$$

This potential has two phases
If $\gamma<1$ the theory is in the gapped "symmetric" phase

$$
\mathfrak{h}_{A B}=\delta_{A B}, \quad \hat{g}_{i j}=g_{i j}
$$

If $\gamma>1$ the theory is in the gapless nematic phase

$$
\mathfrak{h}_{A B}=\mathfrak{h}_{A B}^{(0)} \quad \hat{g}_{i j} \neq g_{i j}
$$

We will be interested in the "symmetric" phase

LINEARIZATION

In flat space we chose the parametrization

$$
\begin{gathered}
\mathfrak{h}_{A B}=\exp \left(\begin{array}{cc}
Q_{2} & Q_{1} \\
Q_{1} & -Q_{2}
\end{array}\right), \quad Q=Q_{1}+i Q_{2} \\
\bar{Q}=Q^{*}
\end{gathered}
$$

and linearize in flat space around

$$
Q=0, \quad \mathfrak{h}_{A B}=\delta_{A B}
$$

to find

$$
\mathcal{L}_{\mathrm{bm}} \approx i \frac{\varsigma \rho_{0}}{4} \bar{Q} \dot{Q}-\frac{m}{2}|Q|^{2}
$$

STATIC STRUCTURE FACTOR

To determine the coefficient ς we calculate the SSF

$$
\bar{s}(\mathbf{k})=2 \pi \ell^{2} \nu^{-1}\left\langle\bar{\rho}_{-\mathbf{k}} \bar{\rho}_{\mathbf{k}}\right\rangle
$$

Calculation in the linearized theory reveals

$$
\bar{s}(\mathbf{k})=\frac{2|\varsigma|}{8}|\mathbf{k}|^{4}+\ldots
$$

Match this to a general LLL result for chiral states

$$
\bar{s}(\mathbf{k})=\frac{|\mathcal{S}-1|}{8}|\mathbf{k}|^{4}+\ldots
$$

This uniquely determines

$$
2|\varsigma|=|\mathcal{S}-1|
$$

CANONICAL QUANTIZATION

Turn off external fields

$$
\frac{\nu \varsigma}{2 \pi} A d \hat{\omega}=\frac{\nu \varsigma}{2 \pi} B \hat{\omega}_{0}=\frac{\varsigma \rho_{0}}{2} \epsilon_{\alpha}{ }^{\beta} \hat{e}_{\beta}^{i} \frac{\partial}{\partial t} \hat{e}_{i}^{\alpha}
$$

Potential breaks $S L(2, \mathbb{R})$

From the action we read the CCR

$$
\left[\hat{e}_{\alpha}^{i}(\mathbf{x}), \hat{e}_{j}^{\beta}\left(\mathbf{x}^{\prime}\right)\right]=-\frac{2 i}{\rho_{0} \varsigma} \delta_{j}^{i} \epsilon_{\alpha}^{\beta} \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
$$

Which leads to the $\mathfrak{s l}(2, \mathbb{R})$ algebra for the metric

$$
\begin{aligned}
& {\left[\hat{g}_{z z}(\mathbf{x}), \hat{g}_{\bar{z} \bar{z}}\left(\mathbf{x}^{\prime}\right)\right]=\frac{16}{\rho_{0} \varsigma} \hat{g}_{z \bar{z}}(\mathbf{x}) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)} \\
& {\left[\hat{g}_{\bar{z} \bar{z}}(\mathbf{x}), \hat{g}_{z \bar{z}}\left(\mathbf{x}^{\prime}\right)\right]=\frac{8}{\rho_{0} \varsigma} \hat{g}_{\bar{z} \bar{z}}(\mathbf{x}) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}
\end{aligned}
$$

GMP ALGEBRA

Algebra of the spin connections closes

$$
\left[\hat{\omega}_{i}(\mathbf{k}), \hat{\omega}_{j}(\mathbf{q})\right]=\frac{1}{\rho_{0} \varsigma}\left[k_{j} \hat{\omega}_{i}(\mathbf{k}+\mathbf{q})-q_{i} \hat{\omega}_{j}(\mathbf{k}+\mathbf{q})\right]-\frac{i \epsilon_{i j}}{2 \rho_{0} \varsigma} \hat{R}(\mathbf{k}+\mathbf{q})
$$

Spin connection couples like the dipole moment $\hat{\omega} d A \approx E_{i} \epsilon_{i j} \hat{\omega}_{j}=\mathbf{E} \cdot(\epsilon \hat{\omega}) \quad$ (comare to $\mathrm{U}=-\mathbf{E} \cdot \mathbf{d}$)
"Dipole" algebra implies

$$
[\hat{R}(\mathbf{k}), \hat{R}(\mathbf{q})]=\frac{4 \pi}{\nu \varsigma} i(\mathbf{k} \times \mathbf{q}) \ell^{2} \hat{R}(\mathbf{k}+\mathbf{q})
$$

Small \mathbf{k} GMP algebra follows $\quad[\bar{\rho}(\mathbf{k}), \bar{\rho}(\mathbf{q})] \approx i \ell^{2}(\mathbf{k} \times \mathbf{q}) \bar{\rho}(\mathbf{k}+\mathbf{q})$

WHAT ELSE CAN BIMETRIC THEORY DO?

 Complete Lagrangian up to three derivatives$\mathcal{L}_{\mathrm{bm}}=\frac{\nu \varsigma}{2 \pi} A d \hat{\omega}-\frac{\hat{c}}{4 \pi} \hat{\omega} d \hat{\omega}-\frac{\nu \varsigma}{4 \pi} \hat{\nabla}_{i} E_{i} B-\frac{\hat{c}^{2}}{8 \pi} \hat{\nabla}_{i} E_{i} \hat{R}-\frac{\tilde{m}}{2}\left(\frac{1}{2} \hat{g}_{i j} g^{i j}-\gamma\right)^{2}-\frac{\alpha}{4}|\Gamma-\hat{\Gamma}|^{2}$
\star Projected static structure factor up to $|\mathbf{k}|^{6}$
\star Dispersion relation of the GMP mode up to $|\mathbf{k}|^{2}$
\star Absence of the GMP mode and nematic transition in IQH
^ Hidden LLL projection and manifest Particle-Hole duality
\star Girvin-MacDonald-Platzman algebra holds up to $|\mathbf{k}|^{4}$
\star "Guiding center" DC Hall conductivity to $|\mathbf{k}|^{2}$
\star "Guiding center" Hall viscosity to $|\mathbf{k}|^{2}$
\star Shear modulus of the FQH fluid
\star Hints at rich structure of the full W_{∞} theory and more...

OPEN PROBLEMS

\star Understand the non-linearity

* Fully covariant formulation
\star Implications for the boundary theory
\star CFT construction of the GMP state?
\star Competing orders in multi-layer states
« Non-linear higher spin theory
^ Fractional Chern insulators
\star Collective neutral fermion mode in 5/2 state
\star Bimetric theory for PH-Pfaffian
\star Covariant, nonlinear formulation of CFL

^ Quantum Hall liquid crystal phases
FQH liquid crystal
* Detailed study of anisotropic FQH states
\star Relation to "fracton" theories?
\star 3D

SINGLE MODE APPROXIMATION (SMA)

SMA states that observables are saturated by $\bar{\rho}(\mathbf{k})|0\rangle$
For example, optical absorption spectrum $\quad \Delta(k)=\frac{\langle 0| \bar{\rho}(-\mathbf{k}) H \bar{\rho}(\mathbf{k})|0\rangle}{\langle 0| \bar{\rho}(-\mathbf{k}) \overline{(k)}|0\rangle}$

SMA is accurate at small \mathbf{k}
SMA is exact near the nematic phase transition

Chiral edge modes: tunneling exponents, thermal Hall conductance

$$
W[A, \omega]=\int \mathcal{D} a e^{i S[a ; A, \omega]} \longrightarrow \quad \begin{gathered}
\text { Linear response: } \\
\text { Hall conductance, Hall viscosity,. }
\end{gathered}
$$

Ground state degeneracy k

AHARONOV - BOHM EFFECT

Electrically charged particles in magnetic field have $A B$ effect

$$
\begin{gathered}
\Psi \rightarrow \exp \left(2 \pi i e \oint_{\mathcal{C}} A_{i} d x^{i}\right) \Psi \\
\partial_{1} A_{2}-\partial_{2} A_{1}=B
\end{gathered}
$$

Particles with orbital spin in curved space have AB effect

$$
\begin{gathered}
\Psi \rightarrow \exp \left(2 \pi i \bar{s} \oint_{\mathcal{C}} \omega_{i} d x^{i}\right) \Psi \\
\partial_{1} \omega_{2}-\partial_{2} \omega_{1}=R / 2
\end{gathered}
$$

ORBITAL SPIN

In the remainder of the talk I will use the term "orbital spin". In magnetic field electrons quickly move in cyclotron orbits

We consider the limit $\quad m_{\mathrm{el}} \longrightarrow 0$
"Orbital spin" describe the coupling of the low energy physics to spatial geometry

COMPOSITE FERMI LIQUID

States at filling $\nu=\frac{N}{2 N+1} \approx \operatorname{lQH}$ of composite fermions at $\nu_{\mathrm{eff}}=N$
Can be treated via Fermi liquid theory when N is large
Semiclassically the d.o.f. are multipolar distortions of the Fermi surface

Dilation

Shear

Translation
non-dynamical

... dynamical
"Higher spin" area preserving deformations

COMPOSITE FERMI LIQUID IN SMA

Hamiltonian

$$
H=\frac{v_{F} k_{F}}{4 \pi} \sum_{n} \int d^{2} \mathbf{x}\left(1+F_{n}\right) u_{n}(\mathbf{x}) u_{-n}(\mathbf{x}),
$$

CCR

$$
\left[u_{n}(\mathbf{x}), u_{m}\left(\mathbf{x}^{\prime}\right)\right]=\frac{2 \pi}{k_{F}^{2}}\left(n \bar{b} \delta_{n+m, 0}-i k_{F} \delta_{n+m, 1} \partial_{\bar{z}}-i k_{F} \delta_{n+m,-1} \partial_{z}\right) \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
$$

All modes are gapped at $\quad \Delta_{n}=n\left(1+F_{n}\right) \omega_{c}$
The limit $\quad \Delta_{2} \ll \Delta_{n}$ for all $n \geq 3$ is the SMA
Only dynamics of shear distortions $u_{ \pm 2}$ remains
Same as linearized

$$
\left[u_{2}(\mathbf{x}), u_{-2}\left(\mathbf{x}^{\prime}\right)\right]=\frac{4 \pi}{2 N+1} \delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
$$

COMPOSITE FERMI LIQUID IN SMA II

Effective Lagrangian in SMA

$$
\mathcal{L}_{\mathrm{SMA}}=-\frac{i}{2} \frac{2 N+1}{2 \pi} u_{2} \dot{u}_{-2}+\frac{i}{2} \frac{N^{2}(2 N+3) \ell^{2}}{12 \pi} u_{2} \Delta \dot{u}_{-2}-\frac{c_{0}(2 N+1) \omega_{c}}{2 \pi} u_{2} u_{-2}+\frac{c_{2}(2 N+1) \omega_{c} \ell^{2}}{2 \pi} u_{2} \Delta u_{-2}
$$

coincides with the linearized bimetric theory

$$
\mathcal{L}_{\mathrm{bm}}=\frac{2 N+1}{16 \pi} A d \hat{\omega}-\frac{N^{2}(2 N+3)}{96 \pi} \hat{\omega} d \hat{\omega}-\frac{\tilde{m}}{2}\left[\hat{g}_{i j} g^{i j}-\gamma\right]^{2}-\frac{\alpha}{4}[\Gamma-\hat{\Gamma}]^{2}
$$

Bimetric theory prescribes coupling of the CFL to curved space

Conjecture:

Bimetric theory is the geometric non-linear completion of the CFL in the SMA.

What about beyond SMA ?

