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• Gap to all excitations (charged and neutral) 

• All dissipative transport coefficients vanish 

• Parity and time-reversal broken, but       -symmetric  

• No Lorentz invariance 

• Quantized non-dissipative transport coefficients 

• Not uniquely characterized by the filling factor

AT  THE QUANTUM HALL PLATEAU
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Short-ranged 
interaction

Coulomb interaction

Does anything universal happen at the scale                ?

Platzman, He 1996

Balram, Pu 2017

Repellin, Neupert, Papic, Regnault 2014

E ⇠ gap

Girvin, MacDonald, Platzman 1986 Haldane Rezayi 1985

SPECTRUM



It is more convenient to use vielbeins
gij = gij(x, t)

Corresponding ``gauge field’’ is the spin connection !µ

R

2
= @1!2 � @2!1

gij = eAi e
B
j �AB
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BeiB@0e

A
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Spin connection is a ``vector potential’’ for curvature

Geometry is encoded into time-dependent metric

ds2 = gij(x, t)dx
idxj

There is a SO(2) redundancy

g = e · eT

GEOMETRY



external 
e/m field

``mean 
orbital spin’’

spin connection

S =
k
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Z
adA� s
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ad!

Determines 
filling ⌫ = k�1 electric charge of 

constituent particles

SO(2)quantum 
``emergent’’ gauge field

Wen-Zee 
term

CHERN - SIMONS  THEORY  OF  FQH  STATES

Wen, Zee 1991

For multi-component states each component has its own sI



WEN - ZEE  TERM

Implies a global relation on a compact Riemann surface

S = 2s

Wen-Zee term couples the electron density to curvature

⇢ =
⌫

2⇡
B +

⌫s

4⇡
R

N = ⌫N� + ⌫S �

2

Wen, Zee 1991Haldane 1983

Euler 
characteristic

Quantum number is called Shift

Also describes the quantum Hall viscosity
⌦
TxxTxy

↵
= i!⌘H

Avron Zograf Seiler 1995 Read 2009

⌘H = ~S
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• Trial states 

• Exact diagonalization 

• Hydrodynamics 

• Flux attachment (composite bosons and fermions) 

• Bimetric theory

Beyond TQFT we face a strongly interacting problem

BEYOND  TQFT  TOOLS

What can we do about it ?



GIRVIN - MACDONALD - PLATZMAN  STATE 



The GMP mode has been observed in inelastic light scattering experiments 
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Kang, Pinczuk, Dennis, Pfeiffer, West 2001 Kukushkin, Smet, Scarola, Umansky, von Klitzing 2009
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GMP  MODE  IN  EXPERIMENT



★ Universally present in fractional QH states 
★ Absent in integer QH states  
★ Angular momentum or ``spin’’ 2, regardless of    
microscopic details 
★ Nematic phase transition = condensation of the GMP  
mode 
★ Effective theory of the GMP mode should to be a 
theory of massive spin-2 excitation

GENERAL  REMARKS  ABOUT  THE  GMP  MODE



GIRVIN - MACDONALD - PLATZMAN  ALGEBRA
The electron density operator

⇢(x) =
NelX

i=1

�(x� xi)
Fourier

In complex coordinates k · xi = k̄zi + kz̄i

After the Lowest Landau Level projection

Projected density operators : ⇢̄(k) : =
NelX

i=1

eik@zi eik̄zi

Satisfy        algebra

⇢(k) =
1
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eik·xi

W1

[⇢̄(k), ⇢̄(q)] = 2i sin
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GIRVIN - MACDONALD - PLATZMAN  MODE I
Warning: not standard presentation

The LLL generators of W1 Ln,m =
NelX

i=1

zn+1
i @m+1

zi

sl(2,R)

The projected density operator is expanded in Ln,m

⇢̄(k) = e�
|k|2
2

X

m,n

cnmk̄nkmLn�1,m�1

{L0,0,L1,�1,L�1,1}

Ln,m create intra-LL state at momentum k

LLL 
Rotation

LLL Shears, 
spin-2 operators

Operators

are

form algebra



GIRVIN - MACDONALD - PLATZMAN  MODE II

At long wave-lengths the GMP mode is 

The GMP state                 is a shear distortion at small⇢̄(k)|0i

Consider two-body Hamiltonian

Since [H, ⇢̄(k)] 6= 0 the shear distortion costs energy

k

For IQH H̄ = 0 ⇢̄(k)|0i is a 0 energy state

H̄ =
X

k

V (k)⇢̄(�k)⇢̄(k)

⇢̄(k)|0i =

k2

8
L�1,1 +

k̄2

8
L1,�1 + . . .

�
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At small           GMP mode is a gapped, propagating, shear 
distortion of the FQH fluid

k



BIMETRIC  THEORY



The spin-2 mode is described by a symmetric matrix

Given           we introduce an ``intrinsic’’ metric and vielbein

spin connection and curvature follow
R̂

2
= @1!̂2 � @2!̂1

This geometry involves two metrics            , hence bimetric*(gij , ĝij)

*Appeared recently in theories of massive gravity de Rham, Gabadadze, Tolley  
2010
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BIMETRIC  GEOMETRY

hAB

Not the same as two copies of Riemannian geometry

Di↵ ⇥ dDi↵ ! Di↵diag

dSO(2)

FQH constraint:
p
g =

p
ĝĝij = eAi e

B
j hAB = ê↵i ê

�
j �↵�



VISUALISATION

ĝijCan visualize as a (fluctuating) pattern on the surface



BIMETRIC  THEORY
Chern-Simons theory interacting with fluctuating metric

L =
k

4⇡
ada� 1

2⇡
Ada� s

2⇡
ad! � &

2⇡
ad!̂ + Spot[ĝ]

We integrate out the gauge field

L = L1[A, g] + Lbm[ĝ;A, g]

Where L1[A, g] contains no dynamics and 

For IQH k = 1 there is no intra-LL dynamics and
L = L1[A; g]

Pronounced: ``sigma’’

AG, Son 2017

Lbm =
⌫&

2⇡
Ad!̂ � M

2

✓
1

2
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Density and current operators acquire geometric meaning

Continuity equation holds identically

@0R̂+ ✏ik@iÊk ⌘ 0

To the leading order in    , everything is determined by

Fluctuations of electron density = fluctuations of local Ricci curvature

Fluctuations of electron current = fluctuations of ``gravi-electric’’ field

GEOMETRIC  OPERATORS

k

⇢ =
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4⇡
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2⇡
✏ikÊk

&



This potential has two phases

� < 1If the theory  is in the gapped ``symmetric’’ phase

hAB = �AB , ĝij = gij

If the theory  is in the gapless nematic phase� > 1

hAB = h(0)AB

We will be interested in the ``symmetric’’ phase

POTENTIAL  TERM

ĝij 6= gij

Lpot = �M

2
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2
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In flat space we chose the parametrization

hAB = exp

✓
Q2 Q1

Q1 �Q2

◆
, Q = Q1 + iQ2

and linearize in flat space around 

Q = 0 , hAB = �AB

to find

You, Cho, Fradkin 2014Maciejko, Hsu, Kivelson, Park, Sondhi  2013

Q̄ = Q⇤

LINEARIZATION

Gap of the GMP mode

Lbm ⇡ i
&⇢0
4

Q̄Q̇� m

2
|Q|2



To determine the coefficient we calculate the SSF

Calculation in the linearized theory reveals

Match this to a general LLL result for chiral states

This uniquely determines

Vanishes for IQH

STATIC  STRUCTURE  FACTOR

s̄(k) = 2⇡`2⌫�1h⇢̄�k⇢̄ki

s̄(k) =
|S � 1|

8
|k|4 + . . .
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2|&| = |S � 1|



From the action we read the CCR

Which leads to the sl(2,R) algebra for the metric

[ĝzz(x), ĝz̄z̄(x
0)] =

16

⇢0&
ĝzz̄(x) �(x� x0)

[ĝz̄z̄(x), ĝzz̄(x
0)] =

8
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ĝz̄z̄(x)�(x� x0)

CANONICAL  QUANTIZATION
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�
j (x
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Turn off external fields Invariant under SL(2,R)

Potential breaks SL(2,R)

Appeared in Verlinde 1989Haldane 2011



[R̂(k), R̂(q)] =
4⇡

⌫&
i(k⇥ q)`2R̂(k+ q)

``Dipole’’ algebra implies

[!̂i(k), !̂j(q)] =
1

⇢0&

h
kj!̂i(k+ q)� qi!̂j(k+ q)

i
� i✏ij

2⇢0&
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GMP  ALGEBRA

Algebra of the spin connections closes

Spin connection couples like the dipole moment

!̂dA ⇡ Ei✏ij!̂j = E · (✏!̂) (comare to                     )U = �E · d

Small       GMP algebra follows [⇢̄(k), ⇢̄(q)] ⇡ i`2(k⇥ q) ⇢̄(k+ q)k
AG, Son 2017



Complete Lagrangian up to three derivatives

★ Projected static structure factor up to 
★ Dispersion relation of the GMP mode up to 
★ Absence of the GMP mode and nematic transition in IQH 
★ Hidden LLL projection and manifest Particle-Hole duality 
★ Girvin-MacDonald-Platzman algebra holds up to 
★ ``Guiding center’’ DC Hall conductivity to 
★ ``Guiding center’’  Hall viscosity to 
★ Shear modulus of the FQH fluid 
★ Hints at rich structure of the full           theory and more…

WHAT  ELSE  CAN  BIMETRIC  THEORY  DO ? 
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AG, Son 2017



OPEN  PROBLEMS
★ Understand the non-linearity 
★ Fully covariant formulation 
★ Implications for the boundary theory 
★ CFT construction of the GMP state? 
★ Competing orders in multi-layer states  
★ Non-linear higher spin theory 
★ Fractional Chern insulators 
★ Collective neutral fermion mode in 5/2 state 
★ Bimetric theory for PH-Pfaffian  
★ Covariant, nonlinear formulation of CFL  
★ Quantum Hall liquid crystal phases 
★ Detailed study of anisotropic FQH states 
★ Relation to ``fracton’' theories? 
★ 3D 
★ …….

2

3

2

2
3

2

FCI
``quantum metric’’

Bi-layer FQH

Neutral Fermion in 5/2 state

FQH liquid crystal



SINGLE  MODE  APPROXIMATION (SMA)

SMA states that observables are saturated by ⇢̄(k)|0i

SMA is exact near the nematic phase transition

For example, optical absorption spectrum
�

SMA is accurate at small k

SMA Exact

k

�(k) =
h0|⇢̄(�k)H ⇢̄(k)|0i
h0|⇢̄(�k)⇢̄(k)|0i

Spectral weight of the Structure Factor

Repellin, Neupert, Papic, Regnault 2014 Platzman, He 1996



Aharonov-Bohm 
phases

quantum numbers 
of quasiholes

Mutual statistics*

 *after AB phases are subtracted

Chiral edge modes: 
tunneling exponents, 

thermal Hall conductance

Linear response: 
Hall conductance, Hall viscosity,…

Ground state degeneracy

W [A,!] =

Z
DaeiS[a;A,!]

Shift

kN = ⌫N� + ⌫S

S = 2s



Electrically charged particles in magnetic field have AB effect

e
 ! exp
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Particles with orbital spin in curved space have AB effect

 ! exp

✓
2⇡is̄

I

C
!idx

i

◆
 

B
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@1A2 � @2A1 = B

Wen Zee 1992

@1!2 � @2!1 = R/2

AHARONOV - BOHM  EFFECT



In the remainder of the talk I will use the term ``orbital spin’’.
In magnetic field electrons quickly move in cyclotron orbits

e e

``Orbital spin’’ describe the coupling of the low energy 
physics to spatial geometry

s̄

Wen Zee 1992Read 2009

magnetic length `

We consider the limit

!c �! 1

!c =
B

mel

mel �! 0

ORBITAL  SPIN



COMPOSITE  FERMI  LIQUID  
States at filling ⌫ =

N

2N + 1
IQH of composite fermions at⇡ ⌫e↵ = N

Can be treated via Fermi liquid theory when       is largeN

Semiclassically the d.o.f. are multipolar distortions of  the Fermi surface

u0 u±1 non-dynamical

u±2 u±3 u±4 . . . . . .u±n

Dilation Translation

Shear  ``Higher spin’’ area preserving deformations

dynamical

Golkar Nguyen Roberts Son 2016



COMPOSITE  FERMI  LIQUID  IN  SMA
Hamiltonian

CCR

H =
vF kF

4⇡

X

n

Z
d
2x(1 + Fn)un(x)u�n(x),

[un(x), um(x0)] =
2⇡

k2F

⇣
nb̄�n+m,0 � ikF �n+m,1@z̄ � ikF �n+m,�1@z

⌘
�(x� x0)

[u2(x), u�2(x
0)] =

4⇡

2N + 1
�(x� x0)

All modes are gapped at �n = n(1 + Fn)!c

The limit �2 ⌧ �n for all n � 3 is the SMA

Only dynamics of shear distortions        remains u±2
Same as linearized 

bimetric

Phenomenological 
``Landau parameters’’

Nguyen, AG, Son In Progress



Effective Lagrangian in SMA

Bimetric theory is the geometric non-linear completion of the CFL 
in the SMA. 

COMPOSITE  FERMI  LIQUID  IN  SMA II

coincides with the linearized bimetric theory

LSMA = � i
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2
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12⇡
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c2(2N + 1)!c`2

2⇡
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Lbm =
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16⇡
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96⇡
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h
ĝijg

ij � �
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4

h
�� �̂

i2

Bimetric theory prescribes coupling of the CFL to curved space
Conjecture:

What about beyond SMA ? 


